Sharan 是一位数据科学专业人士,在高级分析和应用机器学习方面拥有十年的经验。他写了两本书。《掌握社交媒体挖掘》(Mastering Social Media Mining with R)是关于使用各种社交媒体API来获取数据并开发有趣的分析用例的,而《数据科学要领》(R Data Science Essentials)则是关于数据分析中必不可少的概念和技术的。How to Learn Data Science (A Step-by-Step Guide) 介绍学习数据科学的分步指南。
Sharan 是一位数据科学专业人士,在高级分析和应用机器学习方面拥有十年的经验。他写了两本书。《掌握社交媒体挖掘》(Mastering Social Media Mining with R)是关于使用各种社交媒体API来获取数据并开发有趣的分析用例的,而《数据科学要领》(R Data Science Essentials)则是关于数据分析中必不可少的概念和技术的。How to Learn Data Science (A Step-by-Step Guide) 介绍学习数据科学的分步指南。
2020年9月16日,Nature 发表了 NumPy 团队撰写的一篇综述文章《Array programming with NumPy》(使用NumPy进行数组编程),介绍 NumPy 的发展过程、主要特性和数组编程等。
Mojeed Abisiga, Data Scientist & Machine Learning Engineer的《The List of Top 10 Lists in Data Science》一文为您提供了数据科学家所需的关键信息,这样您就可以有效地利用时间,灵活地探索数据科学的职业道路,帮助您找到穿越数据科学迷宫的方法。
在这份列表中,作者多次提到Kaggle——Kaggle是一个数据建模和数据分析竞赛平台。企业和研究者可在其上发布数据,统计学者和数据挖掘专家可在其上进行竞赛以产生最好的模型。这一众包模式依赖于这一事实,即有众多策略可以用于解决几乎所有预测建模的问题,而研究者不可能在一开始就了解什么方法对于特定问题是最为有效的。各种公司或平台将需要解决的问题挂在Kaggle平台上,通过悬赏找出最佳方案。对那些研究数据分析、机器学习领域的人来说,Kaggle就是一场“华山论剑”。
《数据科学家如何选择 Python 的 IDE》是一篇2018年的文章,提到 Spyder 是 python 做科学计算的最佳 IDE,visual studio 已经变成了 R 语言在 windows 平台上最完美的 IDE,可作参考。
编写Grokking Deep Learning旨在帮助您为深度学习奠定基础,以便您可以掌握主要的深度学习框架。它从关注神经网络的基础开始,然后切换其重点以提供对高级层和体系结构的深入了解。
如果您已经通过了高中数学并掌握了Python的知识,那么您就可以开始学习本书了。
2019年暴发的新型冠状病毒绝不仅仅是一个数据科学问题,更是一个严峻的公共卫生问题,疫情夺去了无数人的生命,也让我们沉痛地去反思一些重要的社会议题:医疗服务的供给与定价、劳工权利乃至出行自由。
但是,作为一名数据科学家,我发自内心地认为应当从数据科学的角度去审视这一问题。我们都曾在Twitter上看到用Excel绘制出的各种图表,不论是指数型增长的,还是压低了疫情高峰的平滑曲线,我们可能因此感到安心或者恐惧,或者会怀疑这些图表的可信性。这就是一个数据科学问题。除此之外,此次疫情中还有许许多多其他的数据科学问题,我将在本文中一一探讨,希望借此启发大家去思考数据,并从中获得更多力量,以明确当下恰当的应对措施。