分类 开源硬件 下的文章

Arduino 进化史


Arduino是一家制作开源硬件和开源软件的公司,同时兼有项目和用户社区,该公司负责设计和制造单板微控制器和微控制器包,用于构建数字设备和交互式对象,以便在物理和数字世界中感知和控制对象,适用于初学者爱好者的常见示例包括简单机器人、恒温器和运动检测器。

apple-touch-startup-image-1334x750.png

Arduino是第一个广泛使用的开源硬件项目,它以Processing项目为基础。Arduino业已成为世界领先的开源硬件和软件生态系统,物联网产品开发的流行工具,也是用于STEM / STEAM教育的最成功的工具之一。


Astro Pi 2即将前往国际空间站


Astro Pi 计算机是配备传感器并安装在特殊外壳中的 Raspberry Pi 计算机,Astro Pi “Izzy”和 Astro Pi “Ed”计算机在 2015 年 Tim Peake 的 Principia 任务期间被送往国际空间站(ISS),已有来自 26 个国家或地区的 5.4 万多名参与者在这些太空轨道硬件上运行了代码。

astro_pi.jpg

树莓派基金会与欧洲宇航局(ESA)携手,Astro Pi 2 将于 12 月作为 SpaceX CRS-24 任务的一部分从佛罗里达州升空。


ZeroPhone:基于Raspberry Pi Zero的50美元开源智能手机


ZeroPhone 是一款开源的、由 Linux 驱动的、50 美元的智能手机。它没有运营商锁,没有臃肿的应用程序,也没有数据挖掘,它不依赖大公司——相反,它的开源硬件和软件让你尽可能多地控制你的手机。ZeroPhone 基于 Raspberry Pi Zero,并运行基于 Debian 的 Raspbian 操作系统,具有小屏幕、经典电话键盘和用于电话、Wi-Fi 和麦克风的硬件开关。

zerophone-splash-whitebkgd_jpg_project-main.jpg

ZeroPhone是用户友好型的,会有手机的典型功能,但在你需要的时候会给你高级功能。你可以很容易地修改和修理它,而且它对电源用户和程序员都很友好。它也是由广泛使用的组件构建的,所以如果你需要,你可以独立构建一个ZeroPhone。


Jetson Nano 模型训练和推理流程


深度学习的训练和推理流程,是先采用高性能图形服务器使用深度学习框架来训练(Training)机器学习算法,研究大量的数据来学习一个特定的场景,完成后得到模型参数,再部署到终端执行机器学习推理(Inference),以训练好的模型从新数据中得出结论。

Training-vs-Inference.jpg

一般的深度学习项目,训练时为了加快速度,会使用多 GPU 分布式训练。但在部署推理时,为了降低成本,往往使用单个 GPU 机器甚至嵌入式平台进行部署。Jetson Nano 可以完成整个训练和推理流程,但基于 Jetson Nano 的低算力,不推荐在 Jetson Nano 上进行复杂训练,而仅用于推理。


新品发布:Arduino Nano RP2040 Connect


2021 年 5 月 17 日,ARDUINO 团队发布搭载 Raspberry Pi RP2040 微控制器的 Arduino Nano RP2040 Connect,RP2040 是运行频率为 133MHz 的双核 Arm Cortex M0+,它有 264KB 的 SRAM,还有 2-16MB 的片外闪存,足以运行 TensorFlow Lite。

Blogpost-03-Nano-2040RP-Connect-1024x549.jpg

Arduino Nano RP2040 Connect 包含 u-blox NINA-W102 WiFi(802.11b/g/n)和蓝牙无线(BLE v4.2)模块,以及具有六轴机器学习能力的 IMU 运动传感器、用于声音和语音激活的板载麦克风、RGB LED 和大量多功能 GPIO 引脚。


Jetson Nano 2GB 深入 Jetson Inference 项目


NVIDIA® Jetson Nano™ 开发者套件是一款面向创客、学习者和开发者的人工智能计算机。官方入门级深度学习教程 Jetson Inference(Hello AI World)仓库使用 NVIDIA TensorRT 将神经网络有效地部署到 Jetson 平台上,以体验三种最常见的计算机视觉 AI——图像识别、对象检测、和语义分割。

Building-and-running-jetson-inference-engine-on-Jetson-Nano-1-1024x245.jpg

Jetson Nano 2GB 开发套件动手玩》已经介绍了 Jetson Nano Developer Kit 的安装和配置,《Jetson Nano 人工智能开发者套件》也介绍了硬件的基本信息,本实践实际是将利用高算力训练获得的模型参数部署到边缘设备执行深度学习推理的过程。


Jetson Nano 2GB 开发套件动手玩


2019 年 3 月, NVIDIA 在 TX2 和 Xavier 获得成功后推出了最初的低配版 Jetson NANO 开发者工具包,广泛应用于机器人、零售、工业、农业和人工智能 OT 等各个领域。2020年10月,NVIDIA 宣布了 Jetson Nano 2GB 开发者套件 ,价格为 59 美元,这使得它对于学习人工智能和机器人技术来说更加实惠。通过 128 核 NVIDIA Maxwell GPU 和 64 位四核 Arm A57CPU 提供 472 GFLOPS 的算力,对比 Jetson 系列的高级版 AGX Xavier 提供 32 TOPS 的算力,约是后者的 1/60(FLOPS和OPS是有差异的算力概念,姑且等同视之),可以使用一些小规模、并且优化过的框架和网络进行推理,并应用于算力要求较低的边缘嵌入式AI设备中,如小型移动机器人、人脸签到打卡、口罩识别、智能门锁、智能音箱等。相校其他单板计算机架构配置较低(如 A53 的 CPU 对比树莓派4的 A72),但独特优势是在低价位上具有专用 GPU 加速处理器,CPU可以通过CUDA框架在GPU上调用CUDA功能,从而实现并行计算的可能性。

jetson-nano-enthusiast-2gb-dev-kit-2c50-d@2x.jpg

在本站的数据科学(DS)栏目中介绍了《Jetson Nano 人工智能开发者套件》的硬件信息,以下准备以“无头模式”来动手开箱使用 Jetson Nano 2GB Developer Kit,全新套件包括载板,以及已经安装在载板的模块(P3448-0003)。


最便宜的x86 SBC


RADXA®是深圳市瑞莎科技有限公司的注册商标,瑞莎科技提供开源硬件产品原型,主要基于瑞芯微Rockchip RK3188、RK3308、RK3328、RK3399等ARM构架芯片设计制作SBC(单板计算机)。

Radxa-Rock-Pi-X.jpg

ROCK Pi X是Radxa的第一款X86 SBC,它可以运行Windows和Linux发行版。当用户询问ROCK Pi 4是否可以运行Windows之后,Radxa小组就启动了ROCK Pi X 。2019年,Radxa发布了基于Intel Atom的SBC,成本仅为39美元,但是具有1GB的RAM,没有存储空间。