《数据科学家如何选择 Python 的 IDE》是一篇2018年的文章,提到 Spyder 是 python 做科学计算的最佳 IDE,visual studio 已经变成了 R 语言在 windows 平台上最完美的 IDE,可作参考。
《数据科学家如何选择 Python 的 IDE》是一篇2018年的文章,提到 Spyder 是 python 做科学计算的最佳 IDE,visual studio 已经变成了 R 语言在 windows 平台上最完美的 IDE,可作参考。
AI领域综合了众多知识,其中编程语言、机器学习和深度学习是其核心。举个例子,我们可以从《跟着迪哥学Python数据分析与机器学习实战》一书来认识Python数据分析与机器学习的基本知识结构,从而初步了解AI的学习路径。
本书结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。
编写Grokking Deep Learning旨在帮助您为深度学习奠定基础,以便您可以掌握主要的深度学习框架。它从关注神经网络的基础开始,然后切换其重点以提供对高级层和体系结构的深入了解。
如果您已经通过了高中数学并掌握了Python的知识,那么您就可以开始学习本书了。
关于作者
Andrew Trask是Digital Reasoning’s machine learning lab的创始成员,该实验室正在研究针对自然语言处理、图像识别和音频转录的深度学习方法。
2019年暴发的新型冠状病毒绝不仅仅是一个数据科学问题,更是一个严峻的公共卫生问题,疫情夺去了无数人的生命,也让我们沉痛地去反思一些重要的社会议题:医疗服务的供给与定价、劳工权利乃至出行自由。
但是,作为一名数据科学家,我发自内心地认为应当从数据科学的角度去审视这一问题。我们都曾在Twitter上看到用Excel绘制出的各种图表,不论是指数型增长的,还是压低了疫情高峰的平滑曲线,我们可能因此感到安心或者恐惧,或者会怀疑这些图表的可信性。这就是一个数据科学问题。除此之外,此次疫情中还有许许多多其他的数据科学问题,我将在本文中一一探讨,希望借此启发大家去思考数据,并从中获得更多力量,以明确当下恰当的应对措施。