数据科学十大清单


Mojeed Abisiga, Data Scientist & Machine Learning Engineer的《The List of Top 10 Lists in Data Science》一文为您提供了数据科学家所需的关键信息,这样您就可以有效地利用时间,灵活地探索数据科学的职业道路,帮助您找到穿越数据科学迷宫的方法。

site-logo.png

在这份列表中,作者多次提到Kaggle——Kaggle是一个数据建模和数据分析竞赛平台。企业和研究者可在其上发布数据,统计学者和数据挖掘专家可在其上进行竞赛以产生最好的模型。这一众包模式依赖于这一事实,即有众多策略可以用于解决几乎所有预测建模的问题,而研究者不可能在一开始就了解什么方法对于特定问题是最为有效的。各种公司或平台将需要解决的问题挂在Kaggle平台上,通过悬赏找出最佳方案。对那些研究数据分析、机器学习领域的人来说,Kaggle就是一场“华山论剑”。


从一本书认识AI的学习路径


AI领域综合了众多知识,其中编程语言、机器学习和深度学习是其核心。举个例子,我们可以从《跟着迪哥学Python数据分析与机器学习实战》一书来认识Python数据分析与机器学习的基本知识结构,从而初步了解AI的学习路径。

d426504110cd3a61.jpg

本书结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。


深度学习入门教材


编写Grokking Deep Learning旨在帮助您为深度学习奠定基础,以便您可以掌握主要的深度学习框架。它从关注神经网络的基础开始,然后切换其重点以提供对高级层和体系结构的深入了解。

Trask_GDL_hires.png

如果您已经通过了高中数学并掌握了Python的知识,那么您就可以开始学习本书了。

关于作者

Andrew Trask是Digital Reasoning’s machine learning lab的创始成员,该实验室正在研究针对自然语言处理、图像识别和音频转录的深度学习方法。

https://livebook.manning.com/book/grokking-deep-learning/